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Abstract
Introduction Artificial Intelligence (AI) modules might simplify the complexities of cardiac ultrasound (US) training 
by offering real-time, step-by-step guidance on probe manipulation for high-quality diagnostic imaging. This study 
investigates real-time AI-based guidance tool in facilitating cardiac US training and its impact on novice users’ 
proficiency.

Methods This independent, prospective randomized controlled trial enrolled participants who completed a six-hour 
cardiac US course, followed by a designated cardiac US proficiency exam. Both groups received in-person guided 
training using the same devices, with the AI-enhanced group receiving additional real-time AI feedback on probe 
navigation and image quality during both training and testing, while the non-AI group relied solely on the instructor’s 
guidance.

Results Data were collected from 44 participants: 21 in the AI-enhanced group and 23 in the non-AI group. 
Improvement was observed in the assessment of the AI-enhanced group compared to the non-AI in acquiring the 
Apical-4-chamber and the Apical-5- chamber views [mean 88% (± SD 10%) vs. mean 76% (± SD 17%), respectively; 
p = 0.016]. On the other hand, a slower time to complete the echocardiography exam was observed by the 
AI-enhanced group [mean 401 s (± SD 51) vs. 348 s (± SD 81) respectively; p = 0.038].

Discussion The addition of real-time, AI-based feedback demonstrated benefits in the cardiac POCUS teaching 
process for the more challenging echocardiography four- and five- chamber views. It also has the potential to surpass 
challenges related to in-person POCUS training. Additional studies are required to explore the long-term effect of this 
training approach.

Clinical trial number Not applicable.
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Introduction
Point-of-care ultrasonography (POCUS) is a rapidly 
evolving discipline that has been found to improve the 
diagnostic accuracy of patients presenting with hypo-
tension, chest pain, and acute dyspnea [1–3] and sig-
nificantly shorten the duration required for initiating 
appropriate treatment [1]. Thus, incorporating POCUS 
into medical education and ongoing professional devel-
opment is essential [2].

Teaching ultrasound (US) is a time-consuming and 
labor-intensive process that traditionally necessitates 
small-group, bedside instruction, usually by skilled phy-
sician sonographers who are often clinically busy [3–5]. 
Additionally, US teaching is susceptible to variance and 
inconsistencies, as guides may differ in quality and teach-
ing methodology. Different POCUS teaching methodolo-
gies, such as hands-on teaching [6], e-learning modules 
[7], or telemedicine [8], have not fully addressed this 
issue, as these methods still necessitate the presence of an 
instructor during hands-on practice. This rising demand 
for POCUS training drives the need for more efficient 
methods, including remote feedback systems that reduce 
reliance on in-person instructors.

Artificial Intelligence (AI)-enhanced POCUS guid-
ance tools might facilitate consistent, cost-effective, and 
autonomous training for medical students and practi-
tioners [9–12]. While US AI-based measurements have 
been extensively explored in recent years for assessing 
critical cardiac US measurements, such as Ejection Frac-
tion [13, 14], VTI [15], IVC overload [16], and RV func-
tion [17], the application of these tools is constrained as 
the majority of AI-based tools necessitate the presence 
of a skilled POCUS operator during the tool’s operation. 
On the other hand, the impact of AI in assisting novice 
operators with real-time adjustments of the US probe 
for image acquisition has been the subject of a relatively 
minor number of studies [18, 19], resulting in less data in 
this research area.

This trial aimed to evaluate whether adding an AI-
based feedback and navigation tool could enhance the 
efficiency of cardiac US training for novice operators. We 
assessed its impact by comparing performance on a vali-
dated cardiac US proficiency exam between two groups 
[2, 7]. Our hypothesis was that the AI-enhanced group 
would obtain higher-quality echocardiographic images, 
indicating that AI tools could augment in-person training 
and accelerate skill acquisition.

Methods
Study participants and design
Participants were second and third-year medical stu-
dents from Ben Gurion University and Soroka University 
Medical Center interns. Eligibility was assessed using 
a recruitment questionnaire specifically developed for 

this study, which gathered information on participants’ 
demographics and additional background informa-
tion for equal allocation between study groups (Appen-
dix 1). Participants who rated their experience with US 
operation above three on a subjective 1–5 scale (where 1 
indicates ‘no prior experience or knowledge’ and 5 indi-
cates ‘highly proficient’) within the questionnaire were 
excluded. Additional exclusions were applied to individu-
als who did not watch the pre-course recorded lectures, 
those who missed the in-person session, and those with 
incomplete data due to technical issues. Consequently, 
the trial was capped at 48 participants (Fig. 1).

After enrollment, participants were randomized and 
assigned in a 1:1 ratio to the AI group and non-AI group, 
stratified by gender, year in medical school, paramedic 
training, simulator operating experience (of any kind), 
and prior US operation experience (using the 1–5 subjec-
tive scale noted above; Fig. 1; Table 1).

The study received approval from the Ethics Review 
Board of the Faculty of Health Sciences at Ben-Gurion 
University of the Negev (Ethics Approval Number: 
15-2022). The research was performed in accordance 
with the Declaration of Helsinki, and all methods were 
carried out in accordance with relevant guidelines and 
regulations. Written consent was obtained from all par-
ticipants, who were fully informed about the study’s pur-
pose and procedures, as well as their right to withdraw at 
any time without consequence. Participation was entirely 
voluntary, with performance results remained confiden-
tial and were not disclosed to any overseeing organiza-
tions, ensuring it had no impact on their evaluations. 
Findings are reported in accordance with the CONSORT 
2010 Statement: updated guidelines for reporting parallel 
group randomized trials [21].

Settings and interventions
This prospective randomized controlled study was con-
ducted at the simulation center of Ben Gurion University 
of the Negev, Israel, during March 2022.

Participants from both groups were given equal train-
ing time, focusing on maximizing hands-on instruction 
guided by trainers at a 1:3 guidance ratio. The cardiac 
US course included three 30-minute lectures as part of 
the pre-course preparation, each focusing on a different 
cardiac US anatomical window: Parasternal views, api-
cal views, and subcostal views. The hands-on training 
session lasted a total of four hours, focused on obtaining 
echocardiography maneuvers and views. Of this time, 
three hours were conducted under the guidance of an 
experienced POCUS instructor using healthy human 
models for demonstration, while the final hour was 
reserved for self-practice on the same models (Fig. 1).

Both groups began with an identical 90-minute hands-
on session, practicing echocardiography views with 
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feedback from a POCUS instructor. Afterward, the 
intervention group received a brief introduction to the 
AI software’s navigation guidance and quality indicator 
features. The AI software then provided real-time feed-
back alongside instructor guidance, offering dual feed-
back throughout the session, including the self-practice 
period. In contrast, the control group continued practic-
ing with the same POCUS device but without AI sup-
port—the sole difference between the two groups (Fig. 2).

POCUS device and AI software
All participants in the control and intervention groups 
used the same Android-operated tablet device connected 
to a Philips Lumify™ probe. The AI-enhanced group was 
also aided by UltraSight’s pre-installed software on their 
Android devices, while the non-AI group used the same 
device without the AI software.

UltraSight’s FDA-approved AI software utilizes 
machine learning to offer healthcare professionals guid-
ance on performing cardiac sonography. When used with 
a Philips Lumify™ probe, the software provides on-screen 
instructions to guide the user on adjusting the US probe, 
including actions such as tilting, rocking, rotation, and 
sliding, to achieve the best possible view (Fig. 2). Further-
more, the software conducts a real-time analysis of the 
cardiac US image, reflected in the quality bar indicator, 
and provides feedback on whether the image quality is 
adequete for diagnosing pathologies. The software sug-
gests that the user maintain the current probe position 
when the image quality is ideal, thereby reducing uncer-
tainty for the user (for further description of the AI tool 
see appendix 2).

Fig. 1 Flow diagram showing overview of trial
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Outcomes
The main objective of this study was to assess the effect of 
using an AI-based tools – navigation feedback and qual-
ity indicator – on the efficiency of cardiac US training for 

novice operators. The primary outcome measured for 
success was the operator’s Cardiac US Score obtained 
in the proficiency exam (appendix 3). Secondary out-
comes encompassed the time taken to complete the US 
exam, beginning with the first captured view (Paraster-
nal Long Axis (PLAX)) and ending with the last (IVC), 
along with individual scores for distinct echocardiogra-
phy views such as Parasternal long axis (PLAX), Para-
sternal short axis (PSAX), Apical-4-chamber (A4C) and 
Apical-5-chamber (A5C), Apical-2-chamber (A2C), Sub-
costal, and IVC views. The scoring system for each view 
included two components: pre-defined landmarks visibil-
ity and image quality. Image quality was rated 0–2 (“not 
readable” =0, “recognizable cardiac US view” =1, “excel-
lent quality” =2). Landmark demonstration was scored 
based on visibility (visible landmark = 1, missing land-
mark = 0). The Cardiac US Score for an individual opera-
tor summed all these components from the entire exam, 
with a maximum achievable score of 42 points (appendix 
3).

To facilitate ease of interpretation, all scores are 
expressed as percentages of the maximum points attain-
able for each variable: for instance, the Cardiac US 
Score is presented as a percentage out of the maximum 
42 points, while specific views, such as the parasternal 
view with a maximum of 12 points, are calculated as 

Table 1 Participant demographics
Characteristic N = 44

Non-AI, 
N = 23

AI-En-
hanced, 
N = 21

p-
val-
ue1

Gender (Female) n, (%) 11 (48%) 12 (57%) 0.53
Age Mean (SD) 26 (2) 26 (2) 0.72
Study Year n, (%) 0.91
2nd 8 (35%) 6 (29%)
3rd 12 (52%) 11 (52%)
Internship 3 (13%) 4 (19%)
Prior experience with operating any 
kind of simulator (yes) n, (%)

8 (35%) 9 (43%) 0.58

Prior proficiency with cardiac POCUS 
n, (%)

1.00

1 – No previous knowledge about 
cardiac POCUS

12 (52%) 11 (52%)

2 – Heard about cardiac POCUS without 
prior exposure

10 (43%) 9 (43%)

3 – Exposed to cardiac POCUS but 
without any operating experience

1 (4.3%) 1 (4.8%)

1Pearson’s Chi-squared test; Welch Two Sample t-test; Fisher’s exact test

Fig. 2 On-screen instructions for maneuvering the probe are shown beneath UltraSight’s logo. In the example shown, the operator is suggested to hold 
position but can also slightly rotate the probe counterclockwise for the dotted line to overlap the arrow. The system’s Quality Bar is on the top right side 
of the screen. Essential ultrasound tools, such as gain and depth, are part of the default Philips Lumify application, shown on the left side of the screen
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percentages of their respective maximums (Appendix 
3). The A4C and A5C scores were calculated together, 
as both views rely on the same anatomical landmarks to 
define the ideal image, with the only distinction being 
that the A5C view additionally includes the aorta as a 
landmark. To avoid duplicating scores for the same ana-
tomical structures, we opted to compute them collec-
tively (full description in appendix 3 and 4).

Assessments and surveys
Following the training, students from each group under-
went a validated cardiac US exam to assess their profi-
ciency [2, 7]. Each exam required participants to obtain 
and record nine views within eight minutes. Operators 
underwent testing while conducting the examination 
on models that were different from the ones they had 
trained with. The cardiac US proficiency exam took place 
immediately after the training session, focusing on the 
short-term impact of the teaching process (Fig. 1).

During the exam, clips recorded by each participant 
were stored on a USB flash drive, labeled with the stu-
dent’s examination serial number, containing no personal 
identification details. Blinding was obtained by randomly 
presenting all clips generated by the AI-enhanced and 
non-AI groups to the assessment of a senior US expert 
with over 10 years of experience. These videos did not 
contain any information that would have alerted the eval-
uator to which study group – AI-enhanced or non-AI – 
the US was obtained from.

Statistics: sample size, randomization, and methods
Descriptive statistics were collected in the summary 
tables. The statistics for customarily distributed variables 
include mean and standard deviation. Non-normally dis-
tributed variables consist of median and interquartile 

ranges. Categorical variables were described with num-
bers and percentages from all available observations. A 
t-test was used to compare two customarily distributed 
groups, Mann Whitney for two non-normally distributed 
groups, and Chi-square for categorical variables. Per-
centages were rounded to two decimal places. The study 
required a minimum cohort of 44 participants, divided 
equally between two groups. This number was calcu-
lated to provide an 80% chance of detecting a statisti-
cally significant 5-point difference between groups under 
the assumed conditions. All statistical analysis from this 
study was completed with R version 4.3.1.

Results
Baseline characteristics
Forty-eight participants went through randomization. 
Two participants from the AI-enhanced group and one 
from the non-AI group were excluded from the trial as 
they did not attend the in-person training session. Addi-
tionally, due to technical issues, one examination’s clips 
of an AI-enhanced group participant were not appro-
priately recorded. Within the AI-enhanced group, 21 
examinations were analyzed (95.5%), while in the non-
AI group, 23 examinations were analyzed (100%). No 
harm or unintended effects were reported in both study 
groups, as scores and participation in the study were kept 
confidential regarding the participant’s superiors.

Primary outcome: cardiac US score
There was no statistically significant difference in the 
Cardiac US Score between the two study groups [mean 
67% (SD ± 15%) vs. mean 64% (SD ± 13%), p = 0.17; 
Table 2; Fig. 3].

Secondary outcomes: time and specific views scores
A sub-analysis of specific views revealed that the group 
using AI-based instructions surpassed the non-AI group 
in the A4C and A5C views score [mean 88% (± SD 10%) 
vs. mean 76% (± SD 17%), respectively; p = 0.016]. Nev-
ertheless, no statistically significant differences were 
observed between the groups in the other echocardiog-
raphy views (refer to Table  2; Fig.  4). Upon examining 
the duration required to complete the Cardiac US exam, 
we found that the scanning times were approximately 
one minute faster in the non-AI group compared to 
the AI-enhanced group during the proficiency exam, as 
anticipated [mean 401 s (± SD 51 s) vs. 348 s (± SD 81 s) 
respectively; p = 0.038; refer to Table 2; Fig. 5).

Discussion
Our research discerned that the utilization of AI guid-
ance significantly aids novice cardiac US operators in 
the procurement of A4C and A5C views (88% vs. 76%, 
p.v 0.007). Nevertheless, the team that did not use an 

Table 2 Cardiac US proficiency exam results
Characteristic No-AI, 

N = 23
AI-Enhanced, 
N = 21

p-
val-
ue1

Parasternal Long Axis (PLAX) 
Score Mean (SD)

80% (± 17%) 73% (± 26%) 0.32

Parasternal Short Axis (PSAX) 
Score, Mean (SD)

63% (± 25%) 71% (± 28%) 0.29

Apical-4-Chamber (A4C) & 
Apical-5-Chamber (A5C) Score, 
Mean (SD)

76% (± 17%) 88% (± 10%) 0.007

Apical-2-Chamber (A2C) Score, 
Mean (SD)

44% (± 34%) 58% (± 34%) 0.18

Subcostal Score, Mean (SD) 63% (± 31%) 57% (± 32%) 0.50
IVC Score, Mean (SD) 63% (± 39%) 52% (± 39%) 0.37
Examination Time, Mean sec 
(SD sec)

348 s (± 81 s) 401 s (± 51 s) 0.038

Cardiac US Score, Mean (SD) 64% (± 13%) 67% (± 15%) 0.37
1Welch Two Sample t-test; Wilcoxon rank sum test
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AI-integrated cardiac acquisition instrument performed 
the cardiac US examination faster (348  s vs. 401  s). No 
statistically significant differences were observed across 
other echocardiography views, presumably due to the 
restricted sample size of our study.

The principal finding in our research was the improve-
ment in capturing the A4C and A5C views, which we 
attribute to the incorporation of AI-based feedback as an 
enhancement to traditional training methods. Drawing 
from our decade of training experience and data derived 
from over 450 students examined over the years in car-
diac US, it is evident that the A4C represents the most 

complex and demanding cardiac US view for beginners 
(comprehensive data can be found in Appendix 5). To our 
knowledge, this assumption has not been investigated in 
prior studies.

This pilot study aimed to evaluate whether AI-based 
feedback could effectively enhance traditional instruc-
tor-led guidance in training novice cardiac US opera-
tors. Rather than seeking to replace in-person guidance, 
our goal was to determine if AI feedback could serve as 
a valuable adjunct, paving the way for future research on 
the potential for AI to fully substitute instructor super-
vision. Although prior research has shown that AI can 

Fig. 5 Time to complete the Cardiac US proficiency exam

 

Fig. 4 Specific Cardiac US Views

 

Fig. 3 Cardiac US Score (%)
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enhance the accuracy of critical echocardiography mea-
surements [9–11],—such as ejection fraction [13], VTI 
[15], IVC overload [14, 16], and RV function [17]—these 
investigations primarily involved experienced physicians 
and required high-quality image acquisition for precise 
assessment. Limited studies have examined the role of AI 
in aiding novices in achieving fundamental cardiac views. 
A similar study with different real-time AI guidance tool 
demonstrated that nurses without ultrasonography expe-
rience were able to obtain diagnostic echocardiographic 
studies using AI real-time on-screen [18]. Another trial 
showed that internal medicine residents carrying a 
POCUS device with AI guidance functionality for two 
weeks could also obtain superior A4C views [19]. These 
trials and ours highlight the potential of real-time AI 
guidance tools on cardiac US performance among novice 
operators.

Our study’s secondary significant observation was the 
accelerated completion of the cardiac US examination by 
the group that did not use AI. This result was expected 
by our team, as we initially thought that handling the US 
probe and understanding AI instructions would require 
a longer duration for each view. Contrasting results 
of accelerated scanning time with a different applica-
tion of real-time AI guidance was reported by another 
team assessing its influence on novice operators [19]. It 
is worth noting that their measurement was limited to 
acquiring the A4C view and was taken after two weeks of 
scanning experience with the AI guidance. Furthermore, 
no statistically significant difference was found between 
our study groups when comparing the time required to 
acquire an A4C view alone (Appendix 3). In the context 
of image acquisition training in echocardiography, the 
integration of AI is currently in a phase of growth and 
learning [10]. The continuous learning and adaptability 
of AI are vital factors that will facilitate its improvement 
over time. Nonetheless, as advancements in these appli-
cations emerge, novice operators may require additional 
time to familiarize themselves with the new tools, as the 
on-screen instructions provided by AI can initially be 
challenging for beginners to navigate.

The demonstrated AI tool, along with other automated 
tools that aid in image acquisition, holds potential for 
future use by diverse operators. Presently, remote auto-
mated ultrasonographic tools enable patients to conduct 
self-examinations and consult their primary physician 
without needing a physical clinic visit [22–26]. This pro-
gression enhances accessibility and convenience, such as 
devices for pregnant women to perform self-examina-
tions [23], and lung ultrasonography self-examinations 
with dialysis [24], heart failure [26], and COVID-19 
patients [22]. Remote automated guidance could engage 
a broader spectrum of inexperienced POCUS opera-
tors across multiple medical disciplines, such as primary 

care physicians, remote healthcare workers, paramedics, 
nurses, and even during cardiology internships. Addi-
tionally, AI-supported devices might show advantages in 
low-income countries in the absence of ongoing tutoring 
[27], opening up possibilities for utilizing a cost-effective 
imaging method compared to currently limited options 
[28, 29].

The uniqueness of our study lies in its real-time identi-
fication of correct hand movements for novice operators, 
primarily medical students with limited knowledge in 
the cardiology field and particularly in operating cardiac 
US exams, after a short US training period, aiding them 
in effectively capturing challenging cardiac views. The 
limitations of this study warrant further examination. 
In contrast to the A4C and A5C, we could not attain a 
statistically significant enhancement in different echocar-
diography views. This is likely due to the limited number 
of samples, but it could also be due to the short tempo-
ral relation between the proficiency test and the hands-
on instruction. A longer time gap between the initial 
training and the proficiency test may find more signifi-
cant value to the AI tool. Subsequent research involving 
larger sample sizes and longer time between training and 
testing is essential to confirm and expand on the effec-
tiveness of AI guidance tools. Moreover, the short self-
training session might have undermined the participants’ 
grasp of the guidance tool’s practical use, as some opera-
tors reportedly opted to disregard the guidance during 
the evaluation. Comparable studies employing real-time 
AI cardiac acquisition tools have addressed this issue by 
granting participants a more comprehensive introduc-
tion to the AI tool, including conducting multiple tests 
over an extended duration [18, 19].

Conclusion
Our findings indicate that a real-time, AI-based guid-
ance tool for cardiac imaging significantly enhanced 
novice operators’ ability to acquire the technically chal-
lenging A4C and A5C views. Further studies incorporat-
ing extended self-practice periods are needed to assess 
the long-term effects of this training approach in clini-
cal patient examinations and to explore its potential as 
a substitute for traditional in-person guidance, address-
ing the increasing demand for training a large number of 
physicians.
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