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Abstract 

Background Training of the neurosurgeon today differs greatly from that of the past, with several well-documented 
challenges contributing to reduced operative time for current cohorts. The Joint Committee on Surgical Training 
(JCST) in the UK and Ireland have stated that simulation-based education (SBE) is part of the solution to tackle this 
training crisis. Our objective was to develop a prioritised list of technical skills through consensus with key opinion 
leaders (KOLs). This approach aimed to enhance understanding of the essential procedures that should shape a tech-
nical skills framework for neurosurgical simulation-based learning curricula.

Methods We utilised a modified Delphi process and Copenhagen Academy for Medical Education and Simulation 
(CAMES) Needs Assessment Formula (NAF) to reach consensus. A total of 71 procedures were included for initial 
analysis, which were extracted from all phases of the JCST curriculum and subsequent brainstorming with KOLs. A five 
person steering group oversaw the process, to ensure a robust methodological approach was followed at all stages.

Results For each of the three Delphi rounds, there were 32, 30, and 31 KOL responses, respectively. A prioritised list 
of 47 procedural skills was generated through consensus. The top three ranking procedures were patient positioning, 
pinning positions and flap design, intracranial pressure (ICP) probe insertion and external ventricular drain (EVD) inser-
tion. Emphasis was placed on acute cranial trauma, degenerative spine, neuro-oncology and CSF diversion proce-
dures as the categorical themes of highest priority.

Conclusions We describe a multi-jurisdiction general needs assessment for technical skills in neurosurgical simula-
tion training. This study will inform the design of future simulation-based learning curriculum in this sphere of training.
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Introduction
Modern neurosurgical trainees face significant chal-
lenges in acquiring the necessary technical competen-
cies required at appropriate stages of their training [1, 
2]. Factors such as contemporary patient safety expec-
tations and governance [3], the fallout from COVID-
19 [4, 5], reduced operative exposure due to working 
hour restrictions [6], and fewer complex cases due to 
advances in alternative treatments contribute to this 
difficulty [7]. As a result, many trainees experience 
reduced operative autonomy, particularly in the earlier 
years of training [8], which may delay their seamless 
progression to independent surgical practice. Given the 
importance of safe and effective surgery in achieving 
positive patient outcomes [9], this issue is a cause for 
concern.

To address these challenges, she Joint Committee on 
Surgical Training (JCST) has emphasised the role of 
simulation-based education (SBE) in aiding the recov-
ery of surgical training post COVID-19 [4]. It is a useful 
tool for learning in neurosurgery, as it is an exception-
ally demanding surgical specialty in technical terms, 
with shallow learning curves [10]. Identifying key pro-
cedural skills for SBE—particularly in early to mid-
training—can significantly impact surgical performance 
in the operating room [11–13]. SBE can support the 
introduction of the competency versus time based neu-
rosurgical curriculum rolled out by the intercollegiate 

surgical curriculum programme (ISCP) in recent years 
[14].

Following Kern’s Six Step Approach to Curriculum 
Development, the first step in designing an SBE cur-
riculum is a problem identification and general needs 
assessment [15]. Other curricula have demonstrated the 
benefits of SBE, including enhanced understanding of 
surgical instruments, technology and equipment in a safe 
learning environment. The selection of skills for inclu-
sion should be guided not only by the quality of simula-
tion modalities [13], but also by their relevance to trainee 
needs. There are now many affordable, accessible training 
models [16–18] and modalities (Fig. 1) available for neu-
rosurgical training, including porcine cadavers (Fig.  2). 
Fresh frozen cadaveric tissue, although significantly more 
expensive, provide high fidelity. Ethical considerations 
must be observed to ensure the proper use of biological 
models, including obtaining review board approval and 
adhering to laboratory protocols, to guarantee that these 
modalities are utilised in a respectful and responsible 
manner during training. The primary focus should be on 
meeting learning objectives through effective SBE [19].

To date, no consensus-driven assessment specific to 
neurosurgery has systematically prioritised skills for 
SBE training. To address this gap, this study aimed to 
develop a prioritised list of technical skills through 
multijurisdictional consensus with key opinion lead-
ers (KOL) in Ireland and the United Kingdom (UK). The 
findings will inform the development of a technical skills 

Fig. 1 A full body synthetic manikin to practice patient positioning and three-point rigid fixation using the Mayfield skull clamp (A). A glass display 
head with encompassing silicone-moulded brain for simulating flap designs (B). Skin incision prior to burr hole execution for placement of external 
ventricular drain (EVD) on a locally developed synthetic simulation model (C). Successful placement and subsequent drainage of cerebrospinal fluid 
(CSF) from the lateral ventricle (D)
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framework for a neurosurgical simulation-based learning 
curriculum.

Methods
This study employed a modified Delphi method employ-
ing the Copenhagen Academy for Medical Education and 
Simulation (CAMES) Needs Assessment Formula (NAF), 
consisting of three iterative survey rounds, to reach 
consensus.

This approach is well established and aligns with sev-
eral comparable studies reported in the literature [20, 
21]. The research and data synthesising process was over-
seen by a steering committee comprising five people: 
consultant neurosurgeons (DC, GZ), senior neurosurgi-
cal trainee (VH), director of simulation education (CC), 
and a surgical education researcher (AR).

Participants
KOLs in this study were recruited using a convenience 
and snowball sampling technique. They are defined as 

senior neurosurgical trainees in years 7 and 8 of an 8-year 
training programme, those in temporary consultant 
roles post-Certificate of Completion of Surgical Train-
ing (CCST) and full-time consultants in neurosurgery, 
all of whom are actively working in public practice. KOLs 
are registered with the following training bodies in the 
UK and Ireland: Royal College of Surgeons Edinburgh 
(RCSEd), Royal College of Surgeons England (RCSEng), 
and Royal College of Surgeons Ireland (RCSI), as hav-
ing completed or are currently completing Fellowship of 
Royal College of Surgeons (FRCS) examinations. Multi-
jurisdiction consensus was attainable as these training 
bodies collectively utilise the JCST curriculum [8]. Fur-
thermore, several studies report the management of vari-
ous neurosurgical conditions in these jurisdictions jointly 
[22–24], which reinforces the general parallels in patient 
demographics and clinical practices.

Fig. 2 Utilising a pig cadaver is a cost effective modality to practice spinal procedures through simulation. Pedicle screw insertion posteriorly (A). 
Anterior approach to cervical spine with interbody cage insertion (B). Anterior approach to lumbar spine for discectomy (C)



Page 4 of 12Roche et al. BMC Medical Education          (2025) 25:328 

Intervention design
The SurveyMonkey Enterprise version™ (Europe) was 
used to host the surveys, and information relevant to 
each survey was collated for distribution via the Quality 
Enhancement Office in RCSI. Surveys were subsequently 
distributed to participants via three gatekeepers: RCSI 
Neurosurgical Programme Administrator, British Neu-
rosurgical Trainees’ Association (BNTA) and Society of 
British Neurological Surgeons (SBNS) relevant mailing 
lists. Surveys were distributed iteratively using 5-point 
nominal data scales to calculate responses. Particular 
questioning criteria applied to each domain. The data 
collection protocol was followed to ensure that all data 
was gathered accurately, completely, and systematically, 
minimizing the risk of errors or inconsistencies.

Round 1: brainstorming and ranking of importance using 
NAF
Two authors (AR, VH), extracted procedural competen-
cies from all phases of neurosurgical training outlined 
in the ISCP curriculum. Further procedures were added 
and existing ones removed through participant brain-
storming. In the first round, we utilised component A.1 
of the CAMES-NAF formula “Doctors”, and requested 
participants to rank procedures based on the statement, 
"All neurosurgery trainees at the end of training certifi-
cation should be competent to perform the following 
procedures at the level expected of a day-1 consultant," 
on a 5-point scale (Appendix 1). After thorough delibera-
tion, the steering committee determined that procedures 
with a mean score of 2.95 or lower in this round would 
be excluded from subsequent rounds. This decision was 
made to reduce the burden of lengthy, repetitive surveys 
on participants and to allow them to focus more effec-
tively on procedures that are critical for newly appointed 
neurosurgical consultants to demonstrate competence.

Round 2. rating using NAF
Results from the first round were aggregated, with pro-
cedures arising from round one redistributed to all par-
ticipants in round two for the purpose of ranking each 
procedure’s perceived “Frequency” and “Risk” (Appen-
dix 1, components A.2 and A.3). In this case, frequency 
refers to the procedure’s prevalence, while risk refers to 
the patient’s risk if a neurosurgical trainee with insuffi-
cient experience performs the procedure.

The steering group was assigned to complete the last 
section of the CAMES-NAF survey, which sought to 
quantify the “Feasibility” of training neurosurgical doc-
tors in these procedures in a simulation-based environ-
ment (Appendix 1, components B.1, B.2, B.3); specifically, 
the factors related to cost, availability, and suitability. 
A total score was obtained by calculating the means 

for each of the NAF’s four domains (Doctors + Fre-
quency + Risk + Feasibility). Each domain was given an 
equal weighting of 25%. A revised list of procedures was 
produced as a result, which could be sent to all partici-
pants for final prioritisation.

Round 3. feasibility using NAF
In the final round, participants were permitted to remove 
any procedures that they thought were inappropriate for 
simulation-based learning, merge and reorder the rank-
ings of the procedures that remained. A 75% majority 
would determine that the results of this round were the 
final prioritised ranking list.

In order to evaluate the measure of rank correlation 
between the NAF score in round two and the final major-
ity decision from KOLs in round three, we performed a 
Pearson correlation (r) coefficient test. Statistical analy-
sis was performed using Stata Version 17.0 (StataCorp, 
College Station, TX, USA). In general for absolute for 
absolute values of r, 0 – 0.19 is regarded as very weak, 
0.2 – 0.39 as weak, 0.40 – 0.59 as moderate, 0.6 – 0.79 as 
strong and 0.8 – 1 as very strong correlation. A high cor-
relation reflects a high degree of consensus.

Results
The first round survey was completed by 32 KOLs and 
respondents from this round provided baseline demo-
graphic data (Table 1). This table reflects the diverse sub-
specialty interests of multiple participants. This round 
incurred a KOL response rate of 4% of the total partici-
pant population that were invited to respond. A total of 
71 surgical procedures were included for analysis, which 
were categorised into seven domains (Appendix 2).

Thirty KOLs completed the second round survey, 
which was a response rate of 3.8%. Following the elimina-
tion of 17 procedures based on the first round’s results, 
54 procedures were included in this round (Table 2). The 
most important procedural skill for SBE in neurosur-
gery at this stage was patient positioning, pinning posi-
tions and flap design, according to the NAF’s assessment. 
There was significant disagreement on the requirement 
of sub-specialist procedures, such as cerebral arterio-
venous malformation (AVM) microsurgery and deep 
brain stimulation, as well as uncommon procedural skills 
such as microvascular anastomosis. As a result, these 
were removed from consideration for selection in this 
and subsequent rounds.

Thirty-one KOLs completed round three, resulting in a 
response rate of 3.9%. This round resulted in a final list of 
47 procedures, which also highlights the changes in rank-
ing based on analysis from rounds 2 to 3.(Table  3). Two 
procedures were eliminated, and a further five merged with 
other procedures as they were deemed inherently similar 
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or used cohesively with other procedural skills. For exam-
ple, anterior cervical discectomy and fusion (ACDF) are 
two separate sequential components of the same surgical 
operation; they were merged here as they address a single 
operative workflow. Patient positioning, pinning positions 
and flap design, ICP probe insertion, EVD insertion, burr 
hole evacuation of chronic subdural haematoma and lum-
bar puncture and lumbar drain insertion were the highest-
ranking prioritised procedures. The excision of convexity 
meningioma, pterional craniotomy, and elevation of com-
pound depressed skull fracture procedures underwent the 
most significant shift in rankings due to differing consen-
sus from the steering committee regarding their “feasibil-
ity” in round 3. As a result, all procedures were re-ranked 
based on KOL input during the subjective re-ranking phase 
at the end. There were no additional unexpected shifts in 
the rankings; consequently, the consistency across rounds 
strengthens the collective agreement among the experts on 
the prioritisation of these neurosurgical procedures. Syrin-
gopleural shunt insertion and myelomeningocele repair 
were the lowest priority procedures, but were nonetheless 
included in the list. Myelomeningocele, commonly referred 
to as "spina bifida," is a serious condition involving the 
spinal cord and its protective coverings. Due to its rarity 
and association with a niche subspecialty in neurosurgery, 
KOLs assigned this procedure lower priority. However, it 
received sufficient support in the first round, to warrant 
inclusion in subsequent rounds.

As the data was normally distributed, a Pearson corre-
lation coefficient was the appropriate test to evaluate the 
correlational linkages between the round two NAF and 
the final KOL opinion in the third round. A Pearson’s co-
efficient of r = 0.97 (95% confidence interval 0.96, 0.99; 
p < 0.01) showed a very strong correlation between both 

rounds, and adds rigour associated with the NAF analysis 
(Fig. 3).

Discussion
In this study, we conducted a three-round modified 
Delphi general needs assessment with KOLs to identify 
which technical procedural skills in neurosurgery should 
be prioritised for inclusion into SBE curricula. KOLs in 
this regard were senior trainees and consultants in neu-
rosurgery. This is the first comprehensive multi-juris-
diction general SBE needs assessment carried out in this 
domain of surgery. A prioritised list of 47 neurosurgical 
procedures that should be supported by SBE was pro-
duced, with an emphasis placed on acute cranial trauma, 
degenerative spine, neuro-oncology and CSF diversion 
procedures as the categorical themes of highest priority.

Patient positioning, pinning positions and flap design, 
ICP probe insertion and EVD insertion were the top 
three ranking skills all throughout the Delphi process. 
This signifies the importance placed on these procedural 
skills by KOLs, as their top tier status was maintained 
throughout our objective quantitative analysis in rounds 
one and two, and in the subjective re-ranking of skills by 
KOLs after round three. Trainees in neurosurgery are 
expected to have competence in performing these pro-
cedures early in their training, in addition to burr hole 
evacuation of chronic subdural haematomas (ranked 
fourth) and lumbar drain insertion (ranked fifth). Cur-
rently, these skills are taught through SBE, but there is a 
notable lack of consistency in how these skills are identi-
fied, prioritised and integrated into training programmes. 
Where possible, considerations should be made to ensure 
junior neurosurgical trainees are afforded the opportu-
nity to practice these skills in a safe learning simulation 
environment prior to real patient encounters.

Table 1 Demographic data from survey round one respondents

Participant: Year 7 Trainee Year 8 Trainee Consultant

n 3 (9%) 1 (3%) 28 (88%)

Affiliation: RCSI RCSEd RCSEng

n 11 (34%) 11 (34%) 10 (32%)

Sub-specialty interest(s): Neurovascular Pituitary Spinal Skull-base

n 5 (16%) 5 (16%) 15 (47%) 9 (28%)

Sub-specialty interest(s): Paediatric neurosurgery Functional Pain Trauma

n: 9 (28%) 4 (13%) 3 (9%) 6 (19%)

Sub-specialty interest(s): General neurosurgery Neuro-oncology Hydrocephalus Radiosurgery

n: 14 (44%) 6 (19%) 5 (16%) 1 (3%)

Gender M: F 30:: 2

Age (median & IQR) 51 (42—56)

Neurosurgical procedures performed 
(median & IQR)

3,000 (1,500—5,500)
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Table 3 Final ranking of procedures with the change of ranking arising from analyses from round two and round three outlined

Final ranking Procedure / skill Change

1 Patient positioning, pinning positions and flap design  ↔ 

2 Intracranial pressure (ICP) probe insertion  ↔ 

3 External ventricular drain (EVD) insertion  ↔ 

4 Burr hole evacuation of chronic subdural / extradural haematoma  ↔ 

5 Lumbar puncture and lumbar drain insertion ↑3

6 Cervical, thoracic and lumbar laminectomy / laminotomy ↓1

7 Trauma flap craniotomy (for subdural haematoma, extradural haematoma), decompressive craniectomy and decompres-
sive bifrontal craniectomy

↑3, ↑10, ↑21

8 Burr hole brain biopsy including stereotactic ↓1

9 Lumbar microdiscectomy ↑2

10 Ventriculoperitoneal (VP) shunt insertion including abdominal dissection ↑2

11 Excision of convexity meningioma ↑10

12 Pterional approach—craniotomy ↓6

13 Endoscopic third ventriculostomy (ETV) ↓4

14 Transcortical approach to glioblastoma (GBM) resection / debulking ↓1

15 Sylvian fissure splitting and exposure of the middle cerebral artery (MCA) bifurcation ↓1

16 Anterior cervical discectomy and fusion (ACDF) ↓1, ↑6

17 Retrosigmoid approach—craniotomy ↓1

18 Midline suboccipital approach—posterior fossa decompression, foramen magnum decompression (bone only ver-
sus opening dura)

 ↔ , ↑3

19 Midline suboccipital approach—midline approach to tumour resection ↓2

20 Elevation of compound depressed skull fracture with dural repair ↑13

21 Transsphenoidal hypophysectomy and biopsy of sellar lesion ↓1

22 Microvascular decompression (facial nerve, trigeminal nerve etc.)  ↔ 

23 Pedicle screw insertion: cervical, thoracic, lumbar ↑4

24 Cranioplasty using autologous, titanium or acrylic implants ↓1

25 Interhemispheric approach—craniotomy ↓2

26 Intra-axial haematoma evacuation (intraparenchymal haematoma) / supratentorial lobar ↓1

27 Dural repair / cerebrospinal fluid (CSF) leak repair ↓3

28 Resection of parasagittal and falcine meningiomas  ↔ 

29 Infratentorial intracerebral hemorrhage (ICH) evacuation ↓3

30 Endoscopic biopsy of intra- and paraventricular brain tumours ↓1

31 Ventriculopleural shunt insertion including pleural dissection  ↔ 

32 Endoscopic fenestration of cyst / arachnoid cyst ↓2

33 Clipping of aneurysm (saccular, complex etc.) ↓1

34 Lobectomy for haemorrhagic contusion  ↔ 

35 Orbitozygomatic approach—craniotomy ↑2

36 Resection of midline ventricular lesion (eg colloid cyst)  ↔ 

37 Middle fossa / extended middle fossa approach—craniotomy ↓2

38 Ventriculoatrial shunt insertion including neck dissection ↑4

39 Resection of 4th ventricular tumours  ↔ 

40 Resection of sphenoid ridge meningioma ↓2

41 Complex extra-axial lesion resection (intrinsic cerebellar tumour, vestibular schwannoma etc.) ↓1

42 Resection of olfactory groove meningioma ↓1

43 Resection of petrous ridge meningioma  ↔ 

44 Craniofacial repair of a CSF leak  ↔ 

45 Craniocervical junction tumour resection  ↔ 

46 Syringopleural shunt insertion  ↔ 

47 Myelomeningocele repair  ↔ 
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For the purpose of immobilisation, the Mayfield skull 
clamp is utilised in many cases of cranial and cervi-
cal spine surgery. Improper application-related adverse 
effects are uncommon; however, improper fixation 
can lead to vascular perforation, pin site infection and 
instances of bone fracture in particularly thin skull areas 
[25, 26]. After patient immobilisation, flap design—lin-
ear, bicoronal, etc.—usually occurs. It is unsurprising 
that these procedural skills ranked with highest prior-
ity in this study given their prevalence in neurosurgery 
and the potential harm to patients that could result from 
inadequate pin placement and / or flap design. Incor-
rect pin placement, even by a few millimetres, can have 
implications on ergonomics associated with task execu-
tion for the neurosurgeon. Furthermore, if due care is 
taken during initial head fixation, it can reduce unnec-
essary case time. These clinical presentations can be 
replicated through SBE, one suggestion is to use a cost 
effective synthetic-based manikin for patient positioning 
and pinning practice component. Anonymized magnetic 
resonance imaging (MRI) or computed tomography (CT) 
images from real patients with cranial or spinal patholo-
gies can accompany the modalities outlined in Fig.  1 to 
support practice of flap design and discussion on surface 
anatomy.

ICP probe insertion and EVD insertion also featured 
prominently on this list. This is also unsurprising as 
both these skills are frequently performed life-saving 
index procedures. In some centres in the UK and Ire-
land, the two procedures are performed independent 
of one another; however, other centres combine both 
approaches by transducing an EVD to obtain an ICP 

reading [27]. Given both procedures ranked second and 
third in our study, this suggests there is a degree of gen-
eralisability in our list. From a skill execution perspec-
tive using SBE, both procedures are typically performed 
via right frontal burr hole, following identification of 
Kocher’s point. Therefore, a single simulation model 
perhaps may be used to accommodate practice of both 
procedures. The most common emergency pathology 
that requires EVD placement is acute hydrocephalus, 
which is typically associated with sizable ventricles [28], 
thus meaning the procedure is usually straightforward. 
However, EVD placement can be a hazardous proce-
dure, and consistent practice during early training years 
through SBE can help accelerate the initial gradual skill 
acquisition phase in a safe learning environment [11]. 
Repeated practice during early training years goes some 
way to increasing fluency and ensuring trainees require 
fewer attempts to perform appropriate ventricular drain 
placement on patients, thus reducing the likelihood of 
repeated mispositioning [29] and subsequent complica-
tions such as infection and intraparenchymal hemorrhage 
[30]. A myriad of simulator modalities exist to accommo-
date practice of these techniques such as perfused cadav-
eric models [31], or commercial synthetic based models 
[19], and models that are deemed impactful but haven’t 
yet undergone rigorous validity evaluation (Fig. 1).

Certain spinal and oncological procedures, including 
laminotomy, laminectomy, lumbar microdiscectomy, 
and excision of convexity meningiomas, ranked highly 
on the list and are considered appropriate for inclu-
sion in advanced neurosurgical training. These tend to 
be more difficult cases, which are typically performed 

Fig. 3 This plot compares the rankings from the NAF survey analysis (blue) with those derived through KOL consensus (red), highlighting their 
correlation
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under supervision by mid-level trainees. Spinal anatomy 
is complex with high levels of surgical precision required 
in order to prevent dural, nerve and spinal cord injury 
(SCI). Complication rates, which encompassed open, 
microendoscopic (ME) and percutaneous approaches, 
varied from 10.8% to 12.5% in lumbar microdiscectomy 
patients [32]. Nerve root damage and exploratory work 
that started at the incorrect vertebral level are two of the 
contributory root causes. Intraoperative error may be 
reduced through the practice of these techniques on pig 
cadavers, as the anatomy is not too dissimilar to human, 
and can allow for practice of many of the steps involved 
in spinal surgical cases (Fig. 2). Its disadvantages include 
the lack of realistic muscle groups and fascicle to accu-
rately portray separation of muscle through dissection 
for anterior approaches, as well as the requirement for 
bespoke licenced wet labs to allow practice. Synthetic 
simulation options exist, which are cost effective and 
have collated sufficient validation metrics to deem them 
useful in teaching and learning [33].

Supratentorial convexity meningioma resection is a 
common procedure on elective neurosurgical theatre 
lists, requiring the full breadth of competent microsurgi-
cal dissection skills to ensure full tumour devascularisa-
tion and detachment [34, 35]. Trainees at the later stages 
of their training are likely to be proficient in performing 
convexity craniotomies, so the development of high-
fidelity task trainers should focus on simulating pre-exist-
ing cranial access where necessary, thereby omitting the 
craniotomy component, and simulating the remaining 
anatomy, such as the dura, associated vascular structures 
and the meningioma itself, for example. This would avoid 
learner cognitive overload and maximise the impact of 
these SBE sessions. This procedure climbed 10 places in 
the final subjective re-ranking phase, as the KOLs priori-
tised more prevalent potentially technically demanding 
neurological pathologies over less common ones. There 
is still a need for newly appointed neurosurgical consult-
ants in tertiary centres to perform fundamental gener-
alist procedural lists even in the face of the expanding 
tendency of sub-specialisation [36]. Our research find-
ings are reflective of this.

While simulation models and modalities exist for every 
procedure on the final list, their effective integration into 
neurosurgical training requires a holistic approach that 
goes beyond mere availability. SBE should be strategi-
cally Integrated into existing neurosurgery curricula [14], 
making it mandatory and scheduling it alongside clini-
cal rotations with protected time to attend. Without this, 
SBE may be deprioritised due to clinical duties. Train-
ing bodies must recognise SBE as essential and work 
with health service administration to balance service 
demands with educational needs, ensuring sustainable 

integration. Multi-institutional support is essential for 
overcoming barriers and integrating SBE into neurosur-
gical training [37]. Remote or virtual platforms [38], low 
cost educational tools and simulation models [16, 39, 40] 
and obtaining equipment loans through collaborations 
with industry partners can mitigates issues faced with 
cost and subsequently improve access in resource-limited 
programmes. Faculty training in simulation pedagogy is 
key for delivering quality performance feedback, targeted 
instruction and objective assessment [41–43]. Although 
many educators are experts in their clinical fields, effec-
tive simulation facilitation requires specialised pedagogi-
cal skills and instructional design expertise [44].

Conducting a general needs assessment of procedural 
skills for SBE in neurosurgery is the first step in curricu-
lum development. SBE curricula will require some flex-
ibility as neurosurgery training in the UK and Ireland is 
outcomes-based, meaning that some trainees reach par-
ticular competency milestones ahead of others. Further 
research is needed to complete targeted needs assess-
ments [15], align training goals and objectives, and 
further refine educational strategies for SBE in neuro-
surgery. Researchers should leverage multi-jurisdictional 
approaches to develop standardised simulation-based 
training frameworks, enabling broader applicability 
across neurosurgical training programmes. For instance, 
curriculum developers aiming to thematically develop a 
trauma-related SBE programme for junior neurosurgi-
cal trainees, might consider some procedural skills such 
as positioning, pinning and flap design (1), burr hole hae-
matoma evacuation (4), trauma flap craniotomy (7), EVD 
insertion (3) and ICP probe insertion (2). This sequence 
generally prioritises life-saving decompression first (burr 
hole or craniotomy), followed by CSF drainage through 
an EVD, and finally ICP monitoring to guide ongoing 
treatment.

Strengths and limitations
One strength is the methodology used in this study, 
which is a widely recognised and utilised framework 
for obtaining consensus in the sphere of surgical 
simulation training. A multi-jurisdiction consensus 
approach also allowed us to obtain a broader institu-
tional level view from KOLs. However, our study has 
several limitations. We captured demographic data 
only from respondents of the first survey, and not from 
the remaining rounds. Snowballing sampling was used 
to recruit participants, due to the small and highly 
specialised target group, although this approach car-
ries the risk of bias. Participants from 12 neurosurgi-
cal subspecialties were included, but epilepsy was not 
represented. Additionally, spinal and general neurosur-
gery made up significant contributions, which may have 
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influenced the procedures prioritised in our final list. 
Although a sizable pool of participants was identified, 
the response rate remained low across all three rounds 
of the Delphi process. While this reflects the inherent 
challenges of recruiting neurosurgical experts, it may 
affect the generalisability of the findings. However, the 
consistency of responses across rounds suggests that 
consensus had stabilised, reinforcing the reliability of 
the expert opinions collected.. Lastly, the focus of this 
study was on acquiring technical skills. Postgraduate 
surgical education universally acknowledges the need 
of training surgeons in non-technical skills, a compara-
ble study methodology should seek to identify the cru-
cial soft skills needed by neurosurgery trainees at key 
junctures throughout training.

Conclusion
In this study, we utilised the CAMES-NAF to identify 
through consensus 47 neurosurgical procedures that 
should be prioritised for SBE. An emphasis was placed on 
more commonly occurring procedures, with a particular 
priority placed on acute cranial trauma care, degenerative 
spine, neuro-oncology and CSF diversion procedures.
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