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Abstract 

Background To make reasonable future medical decisions, medical students need to be sufficiently educated 
to interpret diagnostic tests. Natural frequencies are considered the gold standard for understanding single diag-
nostic test results. However, they may be less suitable in situations involving sequential diagnostic testing. We test 
whether odds and likelihood ratios (odds/LR) may serve as a viable alternative in these situations.

Methods In our preregistered randomized-controlled crossover trial, we recruited 167 medical students and 162 
psychology students. The proportion of correctly calculated positive predictive values of a single (PPV) and two 
sequential diagnostic tests (sPPV) was the primary, the subjective comprehensibility of the information the secondary 
outcome.

Results The proportion of correct PPVs was significantly higher in the natural frequency (36.2%) compared 
to the odds/LR format (21.6%), OR 2.41. Conversely, the proportion of correct sPPVs was significantly higher 
in the odds/LR (10.6%) compared to the natural frequency format (4.9%), OR 2.73. Participants indicated a higher sub-
jective comprehension of test statistics phrased as natural frequencies (Mdn = 19) than as odds/LR (Mdn = -15), r = .61.

Conclusion Teaching Odds/LR next to natural frequencies potentially improves medical students’ understanding 
of PPV and may enhance their ability to make future diagnostic decisions.

Trial registration https:// doi. org/ 10. 17605/ OSF. IO/ F3297.
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Introduction
In the United Kingdom alone, 300,000 people are sub-
jected to a laboratory test per working day [1]. In the 
United States, 14 billion laboratory tests are ordered each 
year [2]; General Practitioners order them in one third of 
all patient encounters [3]. Looking at these figures, one 
might assume that medical doctors would have received 
sufficient medical education to deal with concepts like 
test sensitivities, specificities, and positive predictive val-
ues (PPV). However, long-standing evidence shows that 
doctors across a broad range of specialties and medical 
students are not well prepared by medical training but 
instead struggle to determine the PPV of a diagnostic test 
[4–6]. Although the introduction of natural frequencies 
[7] improved success rates and this format is now recom-
mended for expressing risks in physician–patient-com-
munication [8], overall performance remains poor: In a 
meta-analysis by McDowell and Jacobs [9], 76% of study 
participants—including medical professionals, medical 
students, and laypeople—still fail to correctly calculate 
the PPV. While even children appear to have Bayesian 
intuitions [10], why are most adults unable to solve a sup-
posedly simple Bayesian problem and how can this rea-
soning be further facilitated?

In practice, the problems in computing PPVs are 
exacerbated when diagnostics require a follow-up test 
to confirm an initial result, as is commonly the case in 
cancer screening programs [11, 12]. Here, the PPV of 
the first test serves as the base-rate of the second test. 
In the natural frequency format, calculating the PPV of 
two sequentially positive tests (sPPV) is complex – even 
when assuming conditional independence of the tests for 
mathematical simplicity [13] – as the test statistics need 
to be converted into their corresponding probabilities 
and then multiplied by the respective frequencies. For 
instance, the true positive rate of a PPV task such as "8 
out of 10" needs to be converted to 80%, while a false 
positive rate of "95 out of 990" converts to 9.6%. To com-
pute a sPPV, these probabilities are then multiplied by 
8 and 95, respectively, resulting in approximately 6 true 
and 9 false positives and a sPPV of 6 out of 15. Conse-
quently, performance drops substantially for calculating a 
sPPV compared to a PPV [13–15]. Likewise, because the 
assumed base-rates have in practice always to be adjusted 
to the individual case, one cannot circumvent this issue 
by simply providing generally valid PPVs, sPPVs, or natu-
ral frequencies.

To alleviate these issues, expressing the base-rate of a 
disease as odds and test statistics as Likelihood Ratios 
(odds/LR) has been proposed as an alternative risk 
expression format [14, 16, 17]. LR are dimensionless, 
compound indicators of test accuracy which can be cal-
culated from the sensitivity and specificity of any test 

[18]. The PPV can be obtained by multiplying the base-
rate of a disease expressed as odds by the positive LR 
– representing the ratio of the number of people with 
to those without the disease, multiplied by the ratio of 
the true- to the false-positive rate of a test, respectively 
[14, 16, 17]. For instance, consider a disease with a base 
rate of 10 out of 1,000, which corresponds to odds of 10 
to 990. Given a diagnostic test with a LR of 8, the PPV 
becomes 80 to 990. If a (conditionally independent) fol-
low-up test also returns positive, the odds of having the 
disease increase to 640 to 990. The mathematical simplic-
ity of these calculations may facilitate Bayesian inferences 
for varying base-rates or sequential testing—a notion 
that still needs to be empirically confirmed.

Therefore, we want to scrutinize whether an odds/LR 
format may complement a natural frequencies repre-
sentation of the Bayesian updating process in order to 
enhance medical training programs. We chose to con-
trast the performance of advanced medical students who 
are about to assume diagnostic responsibility with psy-
chology students who may have a different and less spe-
cialized approach to diagnostic issues. We hypothesized 
and pre-registered that subjective understanding and the 
proportion of correctly calculated PPVs will decrease 
when odds/LR formats are used instead of a natural fre-
quencies representation. Conversely, for computing a 
PPV after two sequential positive tests (sPPV), we pre-
dicted superior performance of the odds/LR format.

Methods
This randomized-controlled crossover trial was con-
ducted as pre-registered (https:// osf. io/ xvmnf/). The trial 
and questionnaire design were approved by the Ethics 
Committee at Charité – Universitätsmedizin Berlin (IRB 
EA4/155/23). Written informed consent and confirma-
tion of adult age was obtained from all participants. Con-
sent could be withdrawn at any time.

Setting and participants
Recruitment took place between the 10/25/2023 and the 
2/29/2024 with 329 completed surveys (Fig.  1). At the 
Charité – Universitätsmedizin Berlin, we recruited 167 
5th-year medical students at the start of a mandatory 
seminar on risk communication with 348 enrolled stu-
dents. The students had not received training on similar 
topics as part of their curriculum before participating in 
our study. Furthermore, 162 undergraduate psychology 
students were recruited at the University of Konstanz via 
the university’s trial advertisement platform, where 972 
current or former students were registered at the point 
of the study. The psychology students were additionally 
incentivized with course credit for completing the survey. 
Aiming for 320 participants and achieving 329 completed 

https://osf.io/xvmnf/
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surveys, this study is sufficiently powered (0.8) to detect 
at least medium effects of OR ≥ 2.5 in McNemar tests, 
even with the low rates of correct answers in the sPPV 
task [19].

Survey design
A questionnaire was developed for this study (see Addi-
tional File 1) and generated using SoSci Survey. We used 
this software to randomize participants to first work on 
either natural frequencies or odds/LR. While partici-
pants were unaware of being randomized, neither they 
nor trial staff were blinded to the assigned sequence. In 
each format, participants were asked to calculate the 
rounded numerator and denominator of the PPV of (1) 
a single and (2) two sequentially positive diagnostic 
tests (i.e., when those tested positive are tested positive 
a second time), with an opt-out option provided. In the 
natural frequency format, the base-rate as well as the 
true- and false positive rate of the test were provided as 
natural frequencies (“10 out of 1000 humans in a sam-
ple are infected with the virus./ For 8 out of 10 infected 
individuals, the test comes back positive./ For 2 out of 10 
infected individuals, the test comes back negative./ For 
895 out of 990 non-infected individuals, the test comes 
back negative./ For 95 out of 990 non-infected individu-
als, the test comes back positive.”), while the answer for-
mat was a proportion (“How many of the people who 

tested positive [twice] are actually infected? __ out of __ 
people who tested positive [twice] are actually infected”). 
In the odds/LR format, the base-rate was provided as a 
natural frequency format and in odds (“This means that 
the chance of a person in the sample being infected with 
the virus is 10 to 990.”), and the test statistics were sum-
marized as the LRs, which were rounded to the nearest 
whole number to facilitate mental arithmetic (“If the 
test comes back negative, the chance of a person actually 
being infected decreases fivefold./If the test comes back 
positive, the chance of a person actually being infected 
increases eightfold.”). Answers were to be provided as 
odds (“What is the chance that a person who tested posi-
tive [twice] is actually infected with the virus?__ to __”). 
The numerical values were adapted from the mammog-
raphy-problem [7, 20], but nominally referred to the test 
for an unspecified virus. Participants also rated their 
subjective comprehension of the test statistics (one ques-
tion, translated phrasing in Fig.  3) and their perceived 
accuracy of the test (three questions: overall accuracy, 
capacity of the test to identify infected and non-infected 
individuals, translated phrasing in Fig.  4) using a visual 
slider. At the end, participants were asked whether they 
used any aids (such as the internet, calculators or notes) 
and whether they had encountered similar tasks before. 
Nonresponse to individual items was not permitted, 
and the time spent per page was automatically recorded. 

Fig. 1 Participant flow diagram
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Re-accessing a partially completed questionnaire was not 
possible but was instead registered as a separate instance 
of access. The original German materials can be obtained 
at https:// osf. io/ xvmnf/.

Primary and secondary outcomes
The two primary outcomes were the proportion of cor-
rectly calculated PPVs of (1) a single (rounded 8/103 in 
the natural frequency and all expansions and rounded 
variants of 80/990 in the odds format) or (2) two sequen-
tially positive diagnostic tests (natural frequency: 6/15; 
odds: 640/990). The secondary outcome was the sub-
jective comprehension of the respective information on 
a scale from very hard (−50) to very easy (50) to under-
stand. In addition, we explored the differences in the per-
ceived accuracy of the tests in general and for detecting 
non-infected and infected people (see Fig. 4 for phrasing).

Statistical analysis
Data transformation and analysis were performed using 
R. The complete file is available on OSF (https:// osf. io/ 
xvmnf). Only completed questionnaires were included 
in the pre-specified outcome analyses. Calculations were 
considered correct when numerator and denominator 
were individually rounded to the nearest number above 
or below, including expanded or simplified fractions.

We assessed the primary outcomes using a two-tailed 
McNemar test and computing 95% binomial propor-
tion confidence intervals (CI) with the Wilson method. 
Wilcoxon’s signed rank test was employed to assess the 
secondary outcome and differences in perceived test 
accuracy, with 95%CI of the median derived through 
R = 1,000 bootstrap resamples. Exploratively, we tested 
the generalizability of our findings in a General Linear 
Mixed Model using the lme4-package in R [21] and com-
pared the frequency of systematic errors (see Additional 
File 2 for a detailed description of the methods). We 
considered P-values < 0.05 in two-sided tests statistically 
significant.

Results
Participants and baseline data
The participant flow is presented in Fig.  1. The ques-
tionnaire was accessed 463 times (psychology students: 
n = 203, medical students: n = 260). The landing page 
was not loaded in 63 cases (psychology students: n = 10, 
medical students: n = 53), and either consent was denied 
or participants were not eligible in 4 instances (psychol-
ogy students: n = 1, medical students: n = 3). All 396 eli-
gible participants (psychology students: n = 192, medical 
students: n = 204) were randomized to one of the two risk 
expression format sequences. Specifically, 197 partici-
pants were assigned to first work on the task in natural 

frequencies; 199 were assigned to begin with the odds/LR 
format. 26 and 41 participants respectively discontinued 
the survey post randomization with no statistically sig-
nificant difference between orders, χ2(1, n = 463) = 3.14, 
p = 0.077, Cramer’s V = 0.12. All 329 (psychology stu-
dents: n = 162, medical students: n = 167) completed 
surveys were included in our analysis, unless otherwise 
specified. An overview of differences in the primary end-
points between the two randomized groups can be found 
in Additional File 3.

Primary outcome analysis: positive predictive value
Positive predictive value of a single positive test
When asked for the PPV of a single positive test, partici-
pant performance was significantly higher in the natural 
frequencies format, with 119 (36.2%) correct responses, 
95%CI [31.2%, 41.5%], compared to the odds/LR for-
mat, with 71 (21.6%) correct responses, 95%CI [17.5%, 
26.3%]; χ2 (1, n = 329) = 19.04, p < 0.01, OR 2.41 95%CI 
[1.60; 3.71] (Fig.  2A). This result was robust to correct-
ing for faster answering speed in the odds/LR format but 
was attenuated for participants with no prior exposure to 
similar problems (χ2 (1) = 4.06, p < 0.043, OR 1.74 95%CI 
[1.02; 3.04]; Fig.  2C), and furthermore not apparent for 
psychology students (χ2 (1) = 1.50, p = 0.220, OR 1.45 
95%CI [0.82; 2.63]; Fig. 2B; see Additional File 4).

Positive predictive value of two sequentially positive tests
However, when asked for the PPV of two sequentially 
positive tests (sPPV), participant performance was sig-
nificantly higher in the odds/LR format, with 35 (10.6%) 
correct responses, 95%CI [7.7%, 14.4%], compared to 
the natural frequency format, with 16 (4.9%) correct 
responses, 95%CI [3.0%, 7.8%]; χ2 (1, n = 329) = 7.90, 
p < 0.01, OR 2.73 95%CI [1.33; 6.03] (Fig. 2A). This result 
was robust to correcting for faster answering speed in the 
odds/LR format but was not apparent for participants 
with prior exposure to similar problems (χ2 (1) = 0.00, 
p > 0.99, OR 0.83 95%CI [0.20; 3.27]; Fig.  2C; see also 
Additional File 4).

Error analyses
For the single PPV task, the most common error in the 
natural frequency format (n = 29; 22.0% 95%CI[15.8%; 
29.8%], see Additional File 5) was to report the sensitiv-
ity as PPV. For the odds/LR format, errors most com-
monly resulted from issues with the denominator while 
correctly computing the numerator in the task (e.g., 
“80/920”; n = 43; 34.1% 95%CI[26.4%; 42.8%]), or were 
a result of erroneously converting the test statistics to 
probabilities (“8/100”; n = 15; 11.9% 95%CI[7.4%; 18.7%], 
see Additional File 6).

https://osf.io/xvmnf/
https://osf.io/xvmnf
https://osf.io/xvmnf
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For the sPPV task, most errors committed in the nat-
ural frequency format (n = 50; 32.9%; 95%CI[25.9%; 
40.7%]) resulted from mistaking the PPV for the sPPV 
regardless of its initial correctness (see Additional File 7). 
Only 12 of the 119 (10%) participants correctly identify-
ing the PPV were able to report the correct sPPV in the 
natural frequency format.

Twenty-four participants (18.2% 95%CI[12.5%; 25.6%]) 
reported the same sPPV value as in the PPV task in the 
odds/LR format, making this the most common error 
in this format, followed again by problems in correctly 
identifying the denominator (n = 13; 9.9%; 95%CI[5.9%; 
16.1%], see Additional File 8). Here, 29 of the 71 (40.9%) 

participants correctly identifying the PPV were able to 
report the correct sPPV.

Secondary outcome analysis: subjective comprehensibility 
of the test statistics
The median subjective comprehensibility was signifi-
cantly lower in the odds/LR format (Mdn = −15) than 
in the natural frequency format (Mdn = 19), V = 42,453, 
p < 0.01, r = 0.61 (Fig. 3).

Subjective evaluation of test accuracy
Conversely, participants considered the test significantly 
more accurate in the odds/LR format, with a median 

Fig. 2 Proportion of correctly calculated positive predictive values. Notes. Error bars display 95% confidence intervals. The overlaid numbers indicate 
the proportion of correct answers in percent based on the total number of responses of the corresponding group. A Total number of n= 329 
responses. B Total number of n = 167 responses from medical students and n = 162 responses from psychology students. C Total number of n = 90 
responses indicating, n = 202 responses denying and n= 37 responses being unsure whether they had to work on similar tasks prior to recruitment. 
PPV positive predictive value of a single positive test, sPPV positive predictive value of two sequentially positive tests
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rating of 8 compared to a median rating of −12 in the 
natural frequency format, V = 16,780, p < 0.01, r = 0.29. 
Furthermore, the test was perceived to be significantly 
better at identifying non-infected people in the odds/
LR format (Md = 8) compared to the natural frequency 
format (Md = −15), V = 15,412, p < 0.01, r = 0.34 (Fig.  4). 
Likewise, the performance of the test in identifying 
infected individuals was rated significantly higher in the 
odds/LR (Md = −10) compared to the natural frequency 
format (Md = −15), V = 21,158, p < 0.01, r = 0.16.

Discussion
Our randomized-controlled, crossover trial demonstrates 
that expressing risk as odds/LR increases success rates for 
calculation of the sPPV compared to natural frequencies, 
although the overall performance is low in both formats. 
Conversely, for a single diagnostic test, success rates are 
higher in the natural frequency format. Students report a 
lower subjective comprehension of test statistics phrased 
as odds/LR but assume a higher accuracy.

Our study results reinforce the consistently observed 
low performance of university students in Bayesian infer-
ence tasks [9]. For computation of the PPV, our study 
population and its performance in the natural frequency 

format was in line with the published literature [9]. The 
22% success rate in the odds/LR format exceeded the 
10% rate sometimes reported, because previous studies 
[22, 23] required an additional conversion from odds to 
probabilities. Without this issue, Juslin and colleagues 
[24] reported success rates of 20%. For sPPV in the natu-
ral frequency format, previous studies already provided 
the relevant frequencies, requiring participants to sim-
ply select the correct subsets, thereby further simplify-
ing the task to a PPV task [13–15]. The odds/LR format 
has not yet been investigated in sPPV tasks. While our 
results seem to support the intuition that this format is 
more effective than natural frequencies under these cir-
cumstances, overall success rates remain exceptionally 
low. The sole implementation of odds/LR as the standard 
risk expression format may need to be complemented 
by increased teaching efforts in the interpretation of 
sequential test results.

In contrast, our results suggest clear measures to 
improve medical and non-medical education on risk 
communication of singular diagnostic test results: As 
10% of the surveyed students correctly computed the 
PPV only when phrased as odds/LR (Additional File 9), 
education of the concepts of diagnostic tests should be 

Fig. 3 Subjective comprehensibility of the test statistics by risk expression format. Notes. The scatterplot displays responses from all n = 329 
participants per risk expression format, accompanied by an overlaid boxplot illustrating the median, as well as the 25th and 75th percentile ratings 
provided by participants
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supplemented by this expression of test characteristics 
to further enhance performance compared to only pro-
viding natural frequencies. Furthermore, as errors in the 
odds/LR format were often due to problems in conceptu-
alizing odds, further research may be devoted to how to 
phrase odds and LR that they are most easily understood.

In addition, the odds/LR format stresses the Bayesian 
nature of the PPV task by explicit updating of the base-
rate, and thereby may serve medical students not only 
to correctly compute a PPV in a given scenario, but bet-
ter understand the underpinnings of the problem. Con-
sequently, in the frequent case of sequential diagnostic 
tests or other adjustments to an individualized base-rate, 
odds/LR led to more correct inferences than natural fre-
quencies and LR could even be provided as an alterna-
tive to sensitivity and specificity as test information due 
to their independence from context.

Then again, those reporting prior exposure to similar 
tasks performed particularly well with natural frequencies 

but underperformed in the odds/LR format compared to 
unexposed participants. This suggests that the current 
emphasis on natural frequencies and apparent neglect of 
odds [25] and LR [23, 26] in medical curricula may come 
at a cost: knowledge of one problem-solving strategy – in 
this case, the natural frequency strategy – does not only 
not improve reasoning with odds/LR, but at worst may 
impede students’ cognitive flexibility, limiting their abil-
ity to develop an effective approach when odds and LR 
are used. Similar phenomena have been described previ-
ously in other fields [27, 28]. In contrast, those without 
prior exposure were more successful in adapting their 
strategy to the odds/LR format. Therefore, incorporat-
ing odds and LR alongside natural frequencies in medi-
cal education could not only provide future clinicians 
with an additional problem-solving strategy, but may 
also prevent a potentially maladaptive reliance on natural 
frequencies. We thus encourage intensifying and diver-
sifying education on risk communication and Bayesian 

Fig. 4 Subjective evaluation of test accuracy. Notes. The scatterplots display responses from all n = 329 participants per risk expression format, 
accompanied by overlaid boxplots illustrating the median, as well as the 25th and 75th percentile ratings provided by participants
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statistics – within both medical curricula and frequently 
used online education platforms, such as AMBOSS and 
UpToDate – by including odds/LR and addressing com-
mon misunderstandings in either format to improve 
the performance in Bayesian inference tasks.

This study has limitations. First, repeated participa-
tion of psychology students was theoretically possible 
but ruled out by comparing recruitment and assessment 
platform information and unlikely for medical students 
due to a lack of incentive. Second, we used a binary out-
come without write-aloud protocols and therefore can-
not differentiate non-Bayesian from Bayesian answers 
with computational errors. However, the most frequent 
errors observed in our study in the natural frequency for-
mat were non-Bayesian algorithms already characterized 
in previous studies [7, 29]. Third, the generalizability of 
results may be limited by our sample, which consisted 
of German students only. Fourth, we cannot rule out the 
existence of nonrespondent bias. Finally, we acknowl-
edge that two sequential diagnostic tests are biologically 
dependent, altering the sensitivity and specificity of the 
test when applied multiple times in the same subject 
[30, 31]. However, evidence suggests that study partici-
pants assume conditional independence between tests 
unless explicitly stated otherwise [13, 32]. Furthermore, 
we regard sPPV only as one example of how contextual 
information may require an updating of test statistics.

Conclusion
The current research on risk communication is mainly 
restricted to the improvement of the natural frequency 
format, considered the gold standard for conveying risks. 
While our results support this view for classically com-
municating consequences of single diagnostic tests, it also 
suggests that natural frequencies are neither a one-size-fits-
all nor an all-purpose solution in medical education and 
communication of diagnostic test results. Alternative risk 
expression formats, such as odds and Likelihood Ratios, can 
complement natural frequencies by enabling medical pro-
fessionals not benefitting from the natural frequency rep-
resentation to correctly infer PPVs. For common situations, 
such as sequential testing, odds/LR even are superior to the 
natural frequency format in clarifying risks. As teaching 
only a single approach to risk communication may moreo-
ver limit cognitive flexibility, there is a need to intensify and 
diversify educational efforts on risk communication.
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