Skip to main content

Table 4 Perceptions of medical students towards the benefits of large language models

From: A cross sectional investigation of ChatGPT-like large language models application among medical students in China

 

Gender1

Understanding of large language models2

Degree of trust in the information provided by large language models2

Male

Female

Never heard

Heard but never used

Heard and used

Low trust

Moderate trust

High trust

Versatile across diverse scenarios and exhibiting robust scalability

Agree

746 (91.0)

829 (92.3)

240

769

566

189

1257

129

Disagree

74 (9.0)

69 (7.7)

61

55

27

69

69

5

χ2

1.01

 

70.20

  

135.34

  

p-value

0.32

 

< 0.001

  

< 0.001

  

Robust linguistic abilities

Agree

740 (90.2)

814 (90.6)

246

762

546

195

1228

131

Disagree

80 (9.8)

84 (9.4)

55

62

47

63

98

3

χ2

0.08

 

32.25

  

81.51

  

p-value

0.77

 

< 0.001

  

< 0.001

  

Assisting in addressing everyday challenges

Agree

695 (84.8)

778 (86.6)

230

711

532

170

1176

127

Disagree

125 (15.2)

120 (13.3)

71

113

61

88

150

7

χ2

1.24

 

29.28

  

101.50

  

p-value

0.27

 

< 0.001

  

< 0.001

  

Enhance learning and work efficiency while alleviating burdens

Agree

743 (90.6)

812 (90.4)

243

745

567

182

1243

130

Disagree

77 (9.4)

86 (9.6)

58

79

26

76

83

4

χ2

0.02

 

51.50

  

142.50

  

p-value

0.90

 

< 0.001

  

< 0.001

  

Delivering superior intelligent services

Agree

741 (90.4)

834 (92.9)

246

768

561

189

1258

128

Disagree

79 (9.6)

64 (7.1)

55

56

32

69

68

6

χ2

3.53

 

48.22

  

135.07

  

p-value

0.06

 

< 0.001

  

< 0.001

  
  1. 1 Chi-Squared test
  2. 2 Kruskal-Wallis H test